ON BRENNAN-SCHWARTZ PROCESS, THE HEAT TRANSFER EQUATION AND THE DENSITY OF AVERAGED GEOMETRIC BROWNIAN MOTION

GERARDO HERNANDEZ-DEL-VALLE

ABSTRACT. In this talk we explore the existing relationship between Brennan-Schwartz processes X:

$$dX_t = (\beta + \alpha X_t)dt + \sigma X_t dB_t, \quad X_0 = 0,$$

(which appeared in the literature of interest rates) the heat transfer equation w in a moving medium with velocity of motion f:

$$\frac{\partial w}{\partial s}(s, y) = a \frac{\partial^2 w}{\partial y^2}(s, y) + f(y) \frac{\partial w}{\partial y}(s, y)$$

and the density φ_Y of averaged geometric Brownian P motion:

$$Y_t := \int_0^t P_s ds.$$

The study of such density is crucial in the computation of for instance: Asian options, and has recently resurfaced in the study of optimal execution strategies.