1. Use the Echelon Method to solve:
 \[
 \begin{align*}
 x + 3y + 2z &= 1 \\
 2x + y - z &= 2 \\
 x + y + z &= 2
 \end{align*}
 \]

2. Use the Gauss Jordan Method to solve:
 \[
 \begin{align*}
 x + 5z &= -6 + y \\
 3x + 3y &= 10 + z \\
 x + 3y + 2z &= 5
 \end{align*}
 \]

3. Solve the Matrix Equation \(Ax = B \) for \(x \):
 \[
 A = \begin{bmatrix} -2 & 4 \\ 3 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 40 \\ 80 \end{bmatrix}
 \]

4. Find the MAX. \& MIN. of the objective function: \(z = 5x + 2y \)
 \[
 \begin{align*}
 3y - 2x &\geq 0 \\
 y + 8x &\leq 52 \\
 y - 2x &\leq 2 \\
 x &\geq 3
 \end{align*}
 \]

5. Find the present value:
 \[
 A = \$32,000 \\
 t = 4\text{mos} \\
 r = 9\%
 \]

6. Find the future value:
 \$900 is deposited at 8\% compounded semiannually for 8 years.
7. Find the future value of the annuity. Mike deposits $200 at the end of each month in an account that pays interest at 7.2% compounded monthly for 20 years.

8. Let \(A = \{a, b, c, d, e, f, g\} \), \(B = \{e, f, g, h\} \), \(C = \{f, g\} \), find

 i. \(A \cup (B \cap C) \)

 ii. \(B \cap (A \cup C) \)

 iii. \(C \cup (A \cap B) \).

9. A jar contains 5 red, 4 black, 7 purple and 9 green marbles. If a marble is drawn at random, find

 \[P(\text{red}) \]

 \[P(\text{green}) \]

 \[P(\text{black}) \].

10. There are 25 people in a room, 10 are Democrats and 15 are Republicans. If four people are randomly selected, find

 (a) \(P(\text{all 4 are Democrats}) \)

 (b) \(P(\text{all 4 are Republicans}) \)

 (c) \(P(\text{2 Democrats, 2 Republicans}) \)

 (d) \(P(\text{1 Democrats, 3 Republicans}) \).

11. Find the mean:

 86, 103, 118, 117, 126, 158, 149

12. Find the median:

 6, 99, 15, 21

13. Find the mode:

 1, 1, 2, 3, 3, 4

14. Find standard deviation of the following numbers (nearest tenth).

 7, 6, 12, 14, 18, and 15
15. A 60 Watt light bulb has an average life of 1200 hours with a standard deviation of 50 hours. Find the probability that the life of one of these bulbs will be between 1150 and 1300 hours. (Assume the distribution is normal)

REVIEW SHEET -- MA280

ANSWERS:

1. \(x = 2, y = -1, z = 1 \)
2. \(x = 1, y = 2, z = -1 \)
3. \(x = \begin{bmatrix} 36 & 6 \\ 28 & -2 \end{bmatrix} \)
4. Min 19 at (3,2), Max 49 at (5,12)
5. $31,067.96
6. A=$1685.68
7. $106,752.47
8. i. \{a, b, c, d, e, f, g\},
 ii. \{e, f, g\},
 iii. \{e, f, g\}
9. \(\frac{5}{25}, \frac{9}{25}, \frac{4}{25} \)
10. a) 0.0166
 b) 0.1079
 c) 0.3735
 d) 0.3597
11. 122.43
12. 18
13. 1 and 3
14. 4.7
15. 0.8186