1. Prove that $D[x]$ is a domain if and only if D is a domain.

2. Let $p(x) = x^3 + 2x^2 + 2x + 1 \in \mathbb{Z}_7[x]$. Express $p(x)$ as a product of irreducible polynomials in $\mathbb{Z}_7[x]$.

3. Let R be a ring (not necessarily commutative with unity) that contains at least two elements. Suppose that for each nonzero $a \in R$, there exists a unique $b \in R$ such that $aba = a$.
 a) Show that R has no zero divisors.
 b) Show that $bab = b$.

4. a) Let R be a commutative ring with unity. Let I be an ideal of R. Suppose that I contains a unit of R. Show that $I = R$.
 b) Use part a) to find all ideals of a field F.

5. a) Find all the ideals of \mathbb{Z}_8.
 b) Find all prime ideals and all maximal ideal of \mathbb{Z}_8.

6. Let R be a commutative ring with unity and let N be an ideal of R. Let $\sqrt{N} = \{a \in R$ such that $a^n \in N$ for some $n \in \mathbb{Z}^+\}$. Show that \sqrt{N} is an ideal of R (it is called the radical of N).

7. Notation is as in the previous exercise.
 a) Show that $N \subset \sqrt{N}$.
 b) Show that if N is a prime ideal, then $N = \sqrt{N}$.
 c) Give an example of a proper ideal N of R such that $N \neq \sqrt{N}$.

8. Let G be a group. Recall that the center Z of G is defined by $Z = \{z \in G \mid zx = xz$ for all $x \in G\}$. We proved that Z is a normal subgroup of G. Therefore we can consider the quotient group G/Z. Prove that if G/Z is cyclic, then G is Abelian.