1. (§2 Section 34). (7 points)
 Let $\phi: \mathbb{Z}_{18} \rightarrow \mathbb{Z}_{12}$ be the homomorphism such that $\phi(\overline{1}) = \overline{10}$.
 a) Find the kernel K of ϕ.
 b) Find the group $\phi[\mathbb{Z}_{18}]$.
 c) List the cosets in \mathbb{Z}_{18}/K, showing the elements in each coset.
 d) Give explicitly the isomorphism between \mathbb{Z}_{18}/K and $\phi[\mathbb{Z}_{18}]$ given by the First Isomorphism Theorem.

2. (8 points)
 Let G be the group of all real 2×2 matrices
 $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$, where $ad \neq 0$,
 under matrix multiplication.
 Let N be the subset of G consisting of matrices of the form
 $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$.
 a) Prove that N is a normal subgroup of G (do not forget to prove that it is a subgroup!).
 b) Prove that G is not Abelian, and that G/N is Abelian.

3. (8 points)
 If H is a subgroup of a group G, let $N(H) = \{g \in G \mid gHg^{-1} = H\}$.
 $N(H)$ is called the normalizer of H.
 a) Show that $N(H)$ is a subgroup of G.
 b) Show that $H \subseteq N(H)$ and that H is normal in $N(H)$.
 c) Show that if H is a normal subgroup of the subgroup K in G,
 then $K \subseteq N(H)$ (that is, $N(H)$ is the largest subgroup of G in which H is normal).
 d) Show that H is normal in G if and only if $N(H) = G$.

4. (7 points)
 Let G be a group and let $a \in G$ be an element of finite order $o(a)$.
 a) Prove that if $a^m = e$ for some positive integer m, then $o(a)$ divides m.
 b) If N is normal in G, prove that the order of the coset aN in G/N divides $o(a)$.

1