On the structure of pure O-sequences

ABSTRACT: An order ideal is a collection X of monomials in the variables y_1, \ldots, y_r such that, whenever $M \in X$ and N divides M, $N \in X$. If all maximal monomials of X (the order being given by divisibility) have the same degree, X is called pure. A pure O-sequence is the vector, $h = (1, h_1, h_2, \ldots, h_e)$, counting the number of monomials of X in each degree. Equivalently, pure O-sequences can be characterized as the f-vectors of pure multicompleses, or, in commutative algebra, as the h-vectors of artinian monomial level algebras. The study of pure O-sequences began with the seminal work of Stanley in the Seventies, and has since played a significant role in the development of at least three different areas: the study of simplicial complexes and their f-vectors, the theory of level algebras, and the theory of matroids.

In a work in preparation (joint with M. Boij, J. Migliore, R. Miró-Roig, and U. Nagel), using both algebraic and combinatorial techniques, we study the structure of pure O-sequences. Whereas their first half behaves extremely well, in the second half, suddenly, many bad things may happen. Thus, a complete characterization of pure O-sequences appears to be impossible. However, we conjecture that a very strong structural result must nonetheless be true, called the Interval Conjecture for Pure O-sequences (ICP). (The ICP extends the Interval Conjecture I recently formulated for artinian level algebras.)

Although we have solved the ICP in a few special cases, it is still wide open in general. Our work also includes: a study of the unimodality property for pure O-sequences, where we actually conjecture that this may fail in the worst possible way; a characterization of the first half of pure O-sequences; a useful connection of the ICP with Stanley’s conjecture on the h-vectors of matroids; a study of pure O-sequences of type 2 (that is, when there are exactly 2 maximal monomials in the pure order ideal X); an analysis, from a commutative algebra viewpoint, of the role played by the Weak Lefschetz Property.