Intersecting loops on surfaces and string topology

Kate Poirier, UC Berkeley

SJSU, April 25, 2012
Question

What is the algebraic topology of a manifold?

We will discuss the *string topology* of surfaces, 3-dimensional manifolds, and higher-dimensional manifolds. Our first example of a *string topology operation* will be the *Goldman bracket*.
<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A surface is a surface.</td>
</tr>
</tbody>
</table>
Surfaces

<table>
<thead>
<tr>
<th>Definition</th>
<th>A surface is a surface.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>A surface is a real 2-dimensional manifold.</td>
</tr>
</tbody>
</table>
Surfaces

Definition

A *surface* is a surface.

Definition

A *surface* is a real 2-dimensional manifold.

Definition

A *surface* is something that locally looks like the Euclidean plane \mathbb{R}^2.
Surfaces

<table>
<thead>
<tr>
<th>Definition</th>
<th>A surface is a surface.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>A surface is a real 2-dimensional manifold.</td>
</tr>
<tr>
<td>Definition</td>
<td>A surface is something that locally looks like the Euclidean plane \mathbb{R}^2.</td>
</tr>
</tbody>
</table>

Example
Surfaces

Definition
A *surface* is a surface.

Definition
A *surface* is a real 2-dimensional manifold.

Definition
A *surface* is something that locally looks like the Euclidean plane \mathbb{R}^2.

Example
Surfaces

<table>
<thead>
<tr>
<th>Definition</th>
<th>A surface is a surface.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>A surface is a real 2-dimensional manifold.</td>
</tr>
<tr>
<td>Definition</td>
<td>A surface is something that locally looks like the Euclidean plane \mathbb{R}^2.</td>
</tr>
</tbody>
</table>

Example
Surfaces

Definition
A surface is a surface.

Definition
A surface is a real 2-dimensional manifold.

Definition
A surface is something that locally looks like the Euclidean plane \mathbb{R}^2.

Example
Surfaces

Definition
A surface is a surface.

Definition
A surface is a real 2-dimensional manifold.

Definition
A surface is something that locally looks like the Euclidean plane \mathbb{R}^2.

Example
Surfaces

Definition
A *surface* is a surface.

Definition
A *surface* is a real 2-dimensional manifold.

Definition
A *surface* is something that locally looks like the Euclidean plane \mathbb{R}^2.

Example
Surfaces

Definition

A *surface* is a surface.

Definition

A *surface* is a real 2-dimensional manifold.

Definition

A *surface* is something that locally looks like the Euclidean plane \mathbb{R}^2.

Example
Surfaces

<table>
<thead>
<tr>
<th>Definition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A surface is a surface.</td>
<td></td>
</tr>
<tr>
<td>A surface is a real 2-dimensional manifold.</td>
<td></td>
</tr>
<tr>
<td>A surface is something that locally looks like the Euclidean plane \mathbb{R}^2.</td>
<td></td>
</tr>
</tbody>
</table>

Example

![Diagram of a surface](image-url)
Surfaces

Definition

A *surface* is a surface.

Definition

A *surface* is a real 2-dimensional manifold.

Definition

A *surface* is something that locally looks like the Euclidean plane \mathbb{R}^2.

Example
Surfaces

Two surfaces are *homeomorphic* or *topologically equivalent* if one can be continuously deformed into the other.
Surfaces

Two surfaces are *homeomorphic* or *topologically equivalent* if one can be continuously deformed into the other.

All of these surfaces are homeomorphic to the 2-dimensional sphere.
Surfaces

Two surfaces are *homeomorphic* or *topologically equivalent* if one can be continuously deformed into the other.

All of these surfaces are homeomorphic to the 2-dimensional sphere.
Surfaces

Two surfaces are *homeomorphic* or *topologically equivalent* if one can be continuously deformed into the other.

All of these surfaces are homeomorphic to the 2-dimensional sphere.
Two surfaces are *homeomorphic* or *topologically equivalent* if one can be continuously deformed into the other.

All of these surfaces are homeomorphic to the 2-dimensional sphere.
Surfaces

Two surfaces are *homeomorphic* or *topologically equivalent* if one can be continuously deformed into the other.

All of these surfaces are homeomorphic to the 2-dimensional sphere.
Surfaces

Two surfaces are *homeomorphic* or *topologically equivalent* if one can be continuously deformed into the other.

All of these surfaces are homeomorphic to the 2-dimensional sphere.
Surfaces

Two surfaces are *homeomorphic* or *topologically equivalent* if one can be continuously deformed into the other.

Are all surfaces homeomorphic to the 2-dimensional sphere?
Surfaces

Two surfaces are *homeomorphic* or *topologically equivalent* if one can be continuously deformed into the other.

Are all surfaces homeomorphic to the 2-dimensional sphere? **NO!**
Surfaces

Other examples
Surfaces

Theorem (Classification of closed, orientable surfaces)

A (closed, orientable) surface is completely determined up to homeomorphism by its genus.
A (closed, orientable) surface is completely determined up to homeomorphism by its genus.

The surface of the chair has genus 9.
Curves on Surfaces

Definition

A *closed curve* or *loop* on a surface is a continuous map from the circle to the surface.
Curves on Surfaces

Definition

A \emph{closed curve} or \emph{loop} on a surface is a continuous map from the circle to the surface.
Curves on Surfaces

Definition

A closed curve or loop on a surface is a continuous map from the circle to the surface.

Definition

Two closed curves on a surface are freely homotopic if one can be continuously deformed to the other without leaving the surface.
Curves on Surfaces

Definition
A closed curve or loop on a surface is a continuous map from the circle to the surface.

Definition
Two closed curves on a surface are freely homotopic if one can be continuously deformed to the other without leaving the surface.
Curves on Surfaces

Definition

A *closed curve* or *loop* on a surface is a continuous map from the circle to the surface.

Definition

Two closed curves on a surface are *freely homotopic* if one can be continuously deformed to the other without leaving the surface.
Definition

A *closed curve* or *loop* on a surface is a continuous map from the circle to the surface.

Definition

Two closed curves on a surface are *freely homotopic* if one can be continuously deformed to the other without leaving the surface.
Curves on Surfaces

Definition

A closed curve or loop on a surface is a continuous map from the circle to the surface.

Definition

Two closed curves on a surface are freely homotopic if one can be continuously deformed to the other without leaving the surface.
Curves on Surfaces

Definition

A *closed curve* or *loop* on a surface is a continuous map from the circle to the surface.

Definition

Two closed curves on a surface are *freely homotopic* if one can be continuously deformed to the other without leaving the surface.
Curves on Surfaces

Definition

A *closed curve* or *loop* on a surface is a continuous map from the circle to the surface.

Definition

Two closed curves on a surface are *freely homotopic* if one can be continuously deformed to the other without leaving the surface.
Curves on Surfaces

Definition

A *closed curve* or *loop* on a surface is a continuous map from the circle to the surface.

Definition

Two closed curves on a surface are *freely homotopic* if one can be continuously deformed to the other without leaving the surface.
Curves on Surfaces

Definition

A \textit{closed curve} or \textit{loop} on a surface is a continuous map from the circle to the surface.

Definition

Two closed curves on a surface are \textit{freely homotopic} if one can be continuously deformed to the other without leaving the surface.
Curves on Surfaces

Definition

A *closed curve* or *loop* on a surface is a continuous map from the circle to the surface.

Definition

Two closed curves on a surface are *freely homotopic* if one can be continuously deformed to the other without leaving the surface.
Definition

A closed curve or loop on a surface is a continuous map from the circle to the surface.

Definition

Two closed curves on a surface are freely homotopic if one can be continuously deformed to the other without leaving the surface.
Definition

A closed curve or loop on a surface is a continuous map from the circle to the surface.

Definition

Two closed curves on a surface are freely homotopic if one can be continuously deformed to the other without leaving the surface.
Curves on Surfaces

Definition

A *closed curve* or *loop* on a surface is a continuous map from the circle to the surface.

Definition

Two closed curves on a surface are *freely homotopic* if one can be continuously deformed to the other without leaving the surface.
Curves on Surfaces

Definition

A *closed curve* or *loop* on a surface is a continuous map from the circle to the surface.

Definition

Two closed curves on a surface are *freely homotopic* if one can be continuously deformed to the other without leaving the surface.
Example: every loop on the 2-dimensional sphere is freely homotopic to a constant loop.
Curves on Surfaces

Example: every loop on the 2-dimensional sphere is freely homotopic to a constant loop.
Curves on Surfaces

Example: every loop on the 2-dimensional sphere is freely homotopic to a constant loop.
Example: every loop on the 2-dimensional sphere is freely homotopic to a constant loop.
Example: every loop on the 2-dimensional sphere is freely homotopic to a constant loop.
Curves on Surfaces

Example: every loop on the 2-dimensional sphere is freely homotopic to a constant loop.
Curves on Surfaces

Example: every loop on the 2-dimensional sphere is freely homotopic to a constant loop.
Exercise: the loops ab and ba on the torus are freely homotopic.
Exercise: the loops \(ab \) and \(ba \) on the torus are freely homotopic.

Theorem (2-dimensional Poincaré conjecture)

If every loop on a fixed surface is homotopic to a constant loop, then the surface is homeomorphic to the 2-dimensional sphere.
The Goldman Bracket

Fix an oriented surface Σ.
Consider two free homotopy classes α and β of closed curves on Σ.
Consider representative curves that intersect one another only in transverse double points p.

The Goldman Bracket
Cut α and β at p and reconnect the strands in the other way that respects their orientation.
Let $\alpha \cdot_p \beta$ be the closed curve obtained by cutting and reconnecting.
The Goldman Bracket

Each intersection point \(p \) of \(\alpha \) and \(\beta \) gives a free homotopy class of closed curves \(\alpha \cdot_p \beta \).

Let \(H \) be the \(\mathbb{Q} \)-vector space generated by the set of free homotopy classes of closed curves on \(\Sigma \). (In general, \(H \) is infinite dimensional.)

Define

\[
[\alpha, \beta] = \sum_{p \in \alpha \cap \beta} \pm \alpha \cdot_p \beta.
\]

Signs depend on the orientation of \(\Sigma \)

\[
[\alpha, \beta] = \quad \alpha \cdot_q \beta \quad \text{and} \quad \alpha \cdot_p \beta
\]
The Goldman Bracket

Definition (Goldman Bracket)

Extend \([, ,]\) linearly to obtain a map \([, ,] : H \otimes H \to H.\)

Theorem (Goldman)

The bracket is well defined, is skew-symmetric \([\alpha, \beta] = -[\beta, \alpha]\) and satisfies the Jacobi identity \([[\alpha, \beta], \gamma] + [[\beta, \gamma], \alpha] + [[\gamma, \alpha], \beta] = 0. That is, \((H, [, ,])\) is a Lie algebra.

Idea of proof of Jacobi identity: terms cancel in pairs.
The Goldman Bracket

Example

Let Σ be the 2-dimensional torus. Every closed curve on the 2-dimensional torus has the form $a^k b^\ell$ for some $k, \ell \in \mathbb{Z}$. Consider $[a^k b^\ell, a^m b^n]$.
Example

Let Σ be the 2-dimensional torus. Every closed curve on the 2-dimensional torus has the form $a^k b^\ell$ for some $k, \ell \in \mathbb{Z}$. Consider $[a^k b^\ell, a^m b^n]$.
The Goldman Bracket

Example

Let Σ be the 2-dimensional torus. Every closed curve on the 2-dimensional torus has the form $a^k b^\ell$ for some $k, \ell \in \mathbb{Z}$. Consider $[a^k b^\ell, a^m b^n]$.

\[[a^k b^\ell, a^m b^n] = \pm (kn - \ell m) a^{k+m} b^{\ell+n} \]
The Goldman Bracket

Example

Let Σ be the 2-dimensional torus. Every closed curve on the 2-dimensional torus has the form $a^k b^\ell$ for some $k, \ell \in \mathbb{Z}$. Consider $[a^k b^\ell, a^m b^n]$.

There are $kn + \ell m$ intersection points p. Each term $(a^k b^\ell) \cdot_p (a^m b^n)$ is freely homotopic to $\pm a^{k+m} b^{\ell+n}$. Therefore

$$[a^k b^\ell, a^m b^n] = \pm (kn - \ell m) a^{k+m} b^{\ell+n}.$$
If α and β have representative closed curves that are disjoint, then $[\alpha, \beta] = 0$.

Theorem (Goldman)

Let α and β be free homotopy classes such that α has a representative with no self intersection and such that $[\alpha, \beta] = 0$. Then α and β have disjoint representatives.

The number of terms in $[\alpha, \beta]$ (counting multiplicity) is always less than or equal to the minimal intersection number of curves representing α and β.

Theorem (Chas-Gadgil)

Let α and β be free homotopy classes such that α has a representative with no self intersection. Then the number of terms in $[\alpha, \beta]$ is equal to the minimal intersection number of curves representing α and β.

That is, if α has a representative with no self intersection, there is no cancellation in the Goldman bracket.
The Goldman Bracket

Theorem (Gadgil)

Let $f : \Sigma \to \Sigma'$ be a homotopy equivalence. Then f is homotopic to a homeomorphism if and only if f respects the Goldman bracket.
The Goldman Bracket

Theorem (Gadgil)

Let $f : \Sigma \rightarrow \Sigma'$ be a homotopy equivalence. Then f is homotopic to a homeomorphism if and only if f respects the Goldman bracket.

This theorem is uninteresting in the case of closed surfaces; every homotopy equivalence is homotopic to a homeomorphism. However, the Goldman bracket may be defined for surfaces with boundary. In this case, the theorem says that the Goldman bracket detects whether a weak equivalence of surfaces is equivalent to a homeomorphism.

Surfaces that are homotopy equivalent but not homeomorphic.
3-dimensional version

The Goldman Bracket generalizes to higher dimensional manifolds.

Definition

A 3-dimensional manifold is something that locally looks like Euclidean 3-dimensional space \mathbb{R}^3.
3-dimensional version

The Goldman Bracket generalizes to higher dimensional manifolds.

Definition

A 3-dimensional manifold is something that locally looks like Euclidean 3-dimensional space \mathbb{R}^3.

The surface is replaced by a 3 manifold; a loop on the surface is replaced by a loop in the manifold or a fibered torus in the manifold.

Definition

A closed 1-dimensional family of loops or fibered torus in a 3-dimensional manifold is a continuous map from the fibered torus to the manifold.
3-dimensional version

The Goldman Bracket generalizes to higher dimensional manifolds.

Definition

A 3-dimensional manifold is something that locally looks like Euclidean 3-dimensional space \mathbb{R}^3.

The surface is replaced by a 3 manifold; a loop on the surface is replaced by a loop in the manifold or a fibered torus in the manifold.

Definition

A closed 1-dimensional family of loops or fibered torus in a 3-dimensional manifold is a continuous map from the fibered torus to the manifold.
The Goldman Bracket generalizes to higher dimensional manifolds.

Definition

A 3-*dimensional manifold* is something that locally looks like Euclidean 3-dimensional space \mathbb{R}^3.

The surface is replaced by a 3 manifold; a loop on the surface is replaced by a loop in the manifold or a fibered torus in the manifold.

Definition

A *closed 1-dimensional family of loops* or *fibered torus* in a 3-dimensional manifold is a continuous map from the fibered torus to the manifold.
The Goldman Bracket generalizes to higher dimensional manifolds.

Definition

A 3-dimensional manifold is something that locally looks like Euclidean 3-dimensional space \mathbb{R}^3.

The surface is replaced by a 3 manifold; a loop on the surface is replaced by a loop in the manifold or a fibered torus in the manifold.

Definition

A *closed 1-dimensional family of loops or fibered torus* in a 3-dimensional manifold is a continuous map from the fibered torus to the manifold.
3-dimensional version

The Goldman Bracket generalizes to higher dimensional manifolds.

Definition

A 3-dimensional manifold is something that locally looks like Euclidean 3-dimensional space \mathbb{R}^3.

The surface is replaced by a 3 manifold; a loop on the surface is replaced by a loop in the manifold or a fibered torus in the manifold.

Definition

A closed 1-dimensional family of loops or fibered torus in a 3-dimensional manifold is a continuous map from the fibered torus to the manifold.

We consider fibered tori in a 3-manifold M up to deformation.

Definition

Let H_0 be the \mathbb{Q}-vector space generated by deformation classes of closed curves in M. Let H_1 be the \mathbb{Q}-vector space generated by deformation classes of fibered tori in M.
3-dimensional version

Intersections

\[H_0 \otimes H_1 \rightarrow H_0 \]
3-dimensional version

Intersections

\[H_0 \otimes H_1 \rightarrow H_0 \]

\[H_1 \otimes H_1 \rightarrow H_1 \]
Intersections

$H_0 \otimes H_1 \rightarrow H_0$

$H_1 \otimes H_1 \rightarrow H_1$
Intersections

$H_0 \otimes H_1 \rightarrow H_0$

$H_1 \otimes H_1 \rightarrow H_1$

3-dimensional version
3-dimensional version

Intersections

\[H_0 \otimes H_1 \rightarrow H_0 \]

\[H_1 \otimes H_1 \rightarrow H_1 \]
3-dimensional version

Intersections

\[H_0 \otimes H_1 \rightarrow H_0 \]

\[H_1 \otimes H_1 \rightarrow H_1 \]
The generalized string bracket is skew symmetric and satisfies the Jacobi identity. In fact, the Goldman Bracket generalizes to all dimensions.

Theorem (Chas-Sullivan)

Let M be a closed, oriented d-dimensional manifold and let $LM = \text{Maps}(S^1, M)$ be its free loop space. Then the S^1-equivariant homology $H^*_S(LM)$ of the free loop space of M is a graded Lie algebra.
Previous work of Abbaspour uses the string product (an operation related to the string bracket) to detect hyperbolic 3-dimensional manifolds.

Current work of Chas-Gadgil uses the string bracket to study decompositions of 3-dimensional manifolds.

Such decompositions are related to those guaranteed by Thurston’s celebrated Geometrization conjecture, which has been proven by Perelman and which implies the 3-dimensional Poincaré conjecture.
The construction producing the Goldman Bracket generalizes to other algebraic operations.

Theorem (Turaev)
\[\Delta : H \rightarrow H \otimes H \] is well defined. \((H, [\ , \], \Delta)\) is a Lie bialgebra.

If \(\alpha\) has a representative loop with no self intersections, then \(\Delta(\alpha) = 0\).

Question (Turaev)
If \(\Delta(\alpha) = 0\) then does \(\alpha\) have a representative with no self intersections?

Answer (Chas): No! Turaev's cobracket is zero in many nontrivial examples.
Turaev’s cobraclacket for surfaces

The construction producing the Goldman Bracket generalizes to other algebraic operations.

Theorem (Turaev)

\[\Delta : H \rightarrow H \otimes H \text{ is well defined.} \quad (H, [,], \Delta) \text{ is a Lie bialgebra.} \]

If \(\alpha \) has a representative loop with no self intersections, then \(\Delta(\alpha) = 0 \).

Question (Turaev)

If \(\Delta(\alpha) = 0 \) then does \(\alpha \) have a representative with no self intersections?

Answer (Chas): No! Turaev’s cobraclacket is zero in many nontrivial examples.
Turaev’s cobracket for surfaces

The construction producing the Goldman Bracket generalizes to other algebraic operations.

Theorem (Turaev)

\[\Delta : H \rightarrow H \otimes H \text{ is well defined.} \quad (H, [\cdot, \cdot], \Delta) \text{ is a Lie bialgebra.} \]

If \(\alpha \) has a representative loop with no self intersections, then \(\Delta(\alpha) = 0 \).

Question (Turaev)

If \(\Delta(\alpha) = 0 \) then does \(\alpha \) have a representative with no self intersections?

Answer (Chas): No! Turaev’s cobracket is zero in many nontrivial examples.
Turaev’s cobraffacket for surfaces

The construction producing the Goldman Bracket generalizes to other algebraic
operations.

\[\Delta : H \rightarrow H \otimes H \text{ is well defined.} \]
\[(H, \lbrack \cdot, \cdot \rbrack, \Delta) \text{ is a Lie bialgebra.} \]

If \(\alpha \) has a representative loop with no self intersections, then \(\Delta(\alpha) = 0 \).

Question (Turaev)

If \(\Delta(\alpha) = 0 \) then does \(\alpha \) have a representative with no self intersections?

Answer (Chas): No! Turaev’s cobraffacket is zero in many nontrivial examples.
The construction producing the Goldman Bracket generalizes to other algebraic operations.

Theorem (Turaev)

\[\Delta : H \rightarrow H \otimes H \text{ is well defined.} \quad (H, [\ , \], \Delta) \text{ is a Lie bialgebra.} \]

Again, the theorem generalizes to higher-dimensional manifolds.

Theorem (Chas-Sullivan)

Let \(M \) be a closed, oriented \(d \)-dimensional manifold and let \(LM \) be its free loop space. Then \(H^*_{S^1}(LM, M) \) is a graded Lie bialgebra.
Cutting and reconnecting at intersection points yields generalized operations

\[H^\otimes k \rightarrow H^\otimes \ell. \]
Cutting and reconnecting at intersection points yields generalized operations

\[H^\otimes_k \rightarrow H^\otimes_\ell. \]
Cutting and reconnecting at intersection points yields generalized operations

\[H^\otimes k \rightarrow H^\otimes \ell. \]

There is a framework for viewing a generalized operation as coming from an orientable surface with boundary.
Cutting and reconnecting at intersection points yields generalized operations

\[H^\otimes k \rightarrow H^\otimes \ell. \]

There is a framework for viewing a generalized operation as coming from an orientable surface with boundary.
String topology

Gluing of surfaces along boundary corresponds to composition of operations $H^\otimes k \to H^\otimes \ell$. For any surface with boundary, the operation corresponding to it can be given as a composition of the bracket and cobaracket.
String topology

This structure generalizes to closed, oriented d-dimensional manifolds. Every orientable surface with boundary gives rise to a string topology operation.

\[
H_*^k \to H_*^\ell \quad \text{where} \quad H_* = \begin{cases}
H_* (LM) & \text{or} \\
H_*^{S^1} (LM, M)
\end{cases}
\]

Gluing of surfaces along boundary corresponds to composition of operations.

Theorem (Chas-Sullivan, Cohen-Godin, Chataur, Godin, P.-Rounds, ...)

String topology operations describe a topological quantum field theory (TQFT) associated to H_*.
Thank you!