(1) Let H_1 and H_2 be subgroups of a group G. Prove that $H_1 \cap H_2$ is again a subgroup of G.

(2) Determine which of the following are group homomorphisms.
 (a) $f : \mathbb{R} \to \mathbb{R} : x \mapsto |x|$
 (b) $g : \mathbb{R}^* \to \mathbb{R}^* : x \mapsto |x|$
 (c) $h : \mathbb{Z} \to \text{SL}(2, \mathbb{R}) : n \mapsto \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$

(3) Construct non-trivial homomorphisms $\mathbb{Z}_3 \to U(18)$ and $\mathbb{Z}_4 \to U(18)$. (Recall that a homomorphism is non-trivial if its image has at least two elements). Can you construct ones with trivial kernel?

(4) What is the order of 5 in \mathbb{Z}_{24}? What is its order in $U(24)$?

(5) Using the method of repeated squares, calculate $121^{293} \mod 500$.

(6) The following is the Cayley graph of Q_8, the quaternion group

<table>
<thead>
<tr>
<th>Q_8</th>
<th>1</th>
<th>i</th>
<th>j</th>
<th>k</th>
<th>-1</th>
<th>$-i$</th>
<th>$-j$</th>
<th>$-k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>i</td>
<td>j</td>
<td>k</td>
<td>-1</td>
<td>$-i$</td>
<td>$-j$</td>
<td>$-k$</td>
</tr>
<tr>
<td>i</td>
<td>i</td>
<td>1</td>
<td>$-k$</td>
<td>k</td>
<td>$-i$</td>
<td>1</td>
<td>$-j$</td>
<td>j</td>
</tr>
<tr>
<td>j</td>
<td>j</td>
<td>$-k$</td>
<td>1</td>
<td>-1</td>
<td>i</td>
<td>$-j$</td>
<td>1</td>
<td>$-i$</td>
</tr>
<tr>
<td>k</td>
<td>k</td>
<td>$-j$</td>
<td>j</td>
<td>1</td>
<td>$-i$</td>
<td>$-j$</td>
<td>j</td>
<td>1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>$-i$</td>
<td>$-j$</td>
<td>$-k$</td>
<td>1</td>
<td>i</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>$-i$</td>
<td>$-i$</td>
<td>1</td>
<td>$-k$</td>
<td>k</td>
<td>$-i$</td>
<td>1</td>
<td>$-j$</td>
<td>j</td>
</tr>
<tr>
<td>$-j$</td>
<td>$-j$</td>
<td>$-k$</td>
<td>1</td>
<td>-1</td>
<td>i</td>
<td>$-j$</td>
<td>1</td>
<td>$-i$</td>
</tr>
<tr>
<td>$-k$</td>
<td>$-k$</td>
<td>1</td>
<td>j</td>
<td>1</td>
<td>$-i$</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Is this group Abelian? What is the order of j in Q_8? Show that the permutation $(i \ j \ k)(-i \ -j \ -k)$ (cycle notation), is a group homomorphism.

(7) Write the permutation \(\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 6 & 1 & 9 & 7 & 8 & 2 & 5 & 4 & 3 \end{pmatrix} \) in cycle form.

Then write it as a product of transpositions and decide whether it is even or odd.

(8) Why are $\mathbb{Z}_4 \oplus \mathbb{Z}_2$ and $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ not isomorphic?

(9) Let G be an Abelian group and let T be the subset of all elements of finite order in G. Prove that T is a subgroup of G.

(10) Using the attached flow chart for wallpaper groups, determine the symmetry group of the painting Angels and Devils by Escher: