A recursive algorithm is one which calls itself to solve “smaller” versions of an input problem.

How it works:

• The current status of the algorithm is placed on a stack.

A stack is a data structure from which entries can be added and deleted only from one end.

- like the plates in a cafeteria:

PUSH: put a 'plate' on the stack.

POP: take a 'plate' off the stack.

When an algorithm calls itself, the current activation is suspended in time and its parameters are PUSHed on a stack.

The set of parameters need to restore the algorithm to its current activation is called an activation record.
Example:

```
procedure factorial (n)
/* make the procedure idiot proof */
  if n < 0 return 'error'
  if n = 0 then return 1
else
  return n factorial (n-1)
```

The operating system supplies all the necessary facilities to produce:

factorial (3): **PUSH** 3 on stack and call

factorial (2): **PUSH** 2 on stack and call

factorial (1): **PUSH** 1 on stack and call

factorial (0): return 1

POP 1 from stack and return (1) (1)

POP 2 from the stack and return (2) [(1) (1)]

POP 3 from the stack and return (3) [(2) [(1) (1)]]
Complexity:

Let \(f(n) \) be the number of multiplications required to compute factorial (\(n \)).

\[
f(0) = 0: \text{ the initial condition}
\]

\[
f(n) = 1 + f(n-1): \text{ the recurrence equation}
\]

Example:

A recursive procedure to find the max of a nonvoid list.

Assume we have a built-in functions called

- Length which returns the number of elements in a list
- Max which returns the larger of two values
- Listhead which returns the first element in a list

Max requires one comparison.

```plaintext
procedure maxlist (list)
/* strip off head of list and pass the remainder */

if Length(list) = 1 then
    return Listhead(list)
else
    return Max( Listhead(list), maxlist(remainder of list))
```

The recurrence equation for the number of comparisons required for a list of length \(n\), \(f(n)\), is

\[
\begin{align*}
\cdot f(1) &= 0 \\
\cdot f(n) &= 1 + f(n-1)
\end{align*}
\]

Example:

If we assume the length is a power of 2:

- We divide the list in half and find the maximum of each half.
- Then find the Max of the maximum of the two halves.

procedure maxlist2 (list)

/* a divide and conquer approach */

if Length (list) = 1 then
 return Listhead(list)
else
 a = maxlist (first half of list)
 b = maxlist (second half of list)
 return Max{ a, b }

Recurrence equation for the number of comparisons required for a list of length \(n\), \(f(n)\), is

\[
\begin{align*}
\cdot f(1) &= 0 \\
\cdot f(n) &= 2 \cdot f(n/2) + 1
\end{align*}
\]
- There are two calls to `maxlist` each of which requires $f(n/2)$ operations to find the max.

- There is one comparison required by the Max function.

If $n = 16$:

\[
\begin{array}{c}
\text{Divide list in half} \\
\text{Divide list in half} \\
\text{Divide list in half}
\end{array}
\]

\[
\begin{array}{c}
X X|X X
\end{array}
\]

\[
\begin{align*}
f(16) &= 2 f(8) + 1 \\
f(8) &= 2 f(4) + 1 \\
f(4) &= 2 f(2) + 1 \\
f(2) &= 2 f(1) + 1 \\
\end{align*}
\]

So

\[
\begin{align*}
f(2) &= 1, \\
f(4) &= 2 (1) + 1 = 3 \\
f(8) &= 2 (3) + 1 = 7 \\
f(16) &= 2(7) + 1 = 15 \\
f(n) &= \text{?}
\end{align*}
\]