Recursive or inductive definitions of sets and functions on recursively defined sets are similar.

1. Basis step:
 For sets-
 - State the basic building blocks (BBB's) of the set.
 or
 For functions-
 - State the values of the function on the BBB’s.

2. Inductive or recursive step:
 For sets-
 - Show how to build new things from old with some construction rules.
 or
 For functions-
 - Show how to compute the value of a function on the new things that can be built knowing the value on the old things.
3. Extremal clause:

For sets-

• If you can't build it with a finite number of applications of steps 1. and 2. then it isn't in the set.

For functions-

• A function defined on a recursively defined set does not require an extremal clause.

Note: Your author doesn't mention the extremal clause.

It is a standard part of an inductive definition of a set but often ignored (“since everybody knows it is supposed to be there”).

Also note:

• To prove something is in the set you must show how to construct it with a finite number of applications of the basis and inductive steps.

• To prove something is not in the set is often more difficult.

Example:

A recursive definition of N:
1. **Basis:**

 0 is in N (0 is the BBB).

2. **Induction:**

 if n is in N then so is n + 1 (how to build new objects from old: “add one to an old object to get a new one”).

3. **Extremal clause:**

 If you can't construct it with a finite number of applications of 1. and 2., it isn't in N.

Now given the above recursive definition of N we can give recursive definitions of functions on N:

 1. f(0) = 1 (the *initial condition* or the value of the function on the BBB’s).

 2. f(n + 1) = (n + 1) f(n) (the *recurrence* equation, how to define f on the new objects based on its value on old objects)

 f is the *factorial function*: f(n) = n!.

 Note how it follows the recursive definition of N.

 Proof of assertions about inductively defined objects usually involves a
Proof by induction.

- Prove the assertion is true for the BBBs in the basis step.
- Prove that if the assertion is true for the old objects it must be true for the new objects you can build from the old objects.
- Conclude the assertion must be true for all objects.

Example:

We define a^n inductively where n is in \mathbb{N}.

- Basis: $a^0 = 1$
- Induction: $a^{n+1} = a^n a$

Theorem: $\forall m \forall n [a^m a^n = a^{m+n}]$

Proof:

Since the powers of a have been defined inductively we must use a proof by induction somewhere.

Get rid of the first quantifier on m by Universal Instantiation:

- Assume m is arbitrary.
Now prove the remaining quantified assertion

$$\forall n [a^m a^n = a^{m+n}]$$

by induction:

1. **Basis step**: Show it holds for $n = 0$.

 The left side becomes $a^m a^0 = a^m(1) = a^m$

 The right side becomes $a^{m+0} = a^m$

 Hence, the two sides are equal to the same value.

2. **Induction step**: The Induction hypothesis:

 Assume the assertion is true for n: $a^m a^n = a^{m+n}$.

 Now show it is true for $n + 1$.

 The left side becomes

 $$a^m a^{n+1} = a^m (a^n a) = (a^m a^n) a = a^{m+n} a$$

 which follows from

 • the inductive step in the definition of a^n and
 • the induction hypothesis and
 • the associativity of multiplication.

 The right side becomes

 $$a^{m+(n+1)} = a^{(m+n)+1} = a^{m+n} a$$
which follows from

- the inductive definition of the powers of a
- the associativity of addition.

Hence, we have shown for arbitrary m that

$$\forall n [a^m a^n = a^{m+n}]$$

is true by induction.

Since m was arbitrary, by Universal Generalization,

$$\forall m \forall n [a^m a^n = a^{m+n}] \ .$$

Q. E. D.

Example: A recursive definition of the Fibonacci sequence

1. **Basis:**

$$f(0) = f(1) = 1$$

(two initial conditions)

2. **Induction:**

$$f(n + 1) = f(n) + f(n - 1)$$

(the recurrence equation).
Example:

A recursive definition of the set of strings over a finite alphabet Σ.

The set of all strings (including the empty or null string λ) is called (the monoid) Σ^*.

(Excluding the empty string it is called Σ^+.)

1. Basis:

 The empty string λ is in Σ^*.

2. Induction:

 If w is in Σ^* and a is a symbol in Σ, then wa is in Σ^*.

Note: we can concatenate a on the right or left, but it makes a difference in proofs since concatenation is not commutative!

3. Extremal clause.

 Note: infinitely long strings cannot be in Σ^*. (why?)
Example:

Let $\Sigma = \{a, b\}$. Then aab is in Σ^*.

Proof:

We construct it with a finite number of applications of the basis and inductive steps in the definition of Σ^*:

1. λ is in Σ^* by the basis step.

2. By step 1., the induction clause in the definition of Σ^* and the fact that a is in Σ, we can conclude that $\lambda a = a$ is in Σ^*.

3. Since a is in Σ^* from step 2., and a is a symbol in Σ, applying the induction clause again we conclude that aa is in Σ^*.

4. Since aa is in Σ^* from step 3 and b is in Σ, applying the induction clause again we conclude that aab is in Σ^*.

Since we have shown aab is in Σ^* with a finite number of applications of the basis and induction clauses in the definition we have finished the proof.

Q.E.D.
Example:
We give an inductive definition of the well formed parenthesis strings P:

1. Basis clause:

 \((\)\) is in P

2. Induction clause:

 if \(w\) is in P then so are

 \((\)w, (w), \text{ and } w(\) \)

3. Extremal clause

Example:

\(((\))\) is in P.

Proof:

1. \((\)\) is in P by the basis clause

2. \((\)\) must be in P by step 1. and the induction clause

3. \(((\))\) must be in P by step 2. and the induction clause.

Q. E. D.

Note: \))((\)\) is not in P. Why? Can you prove it?
(Hint: what can you say about the length of strings in P? How can you order the strings in P?)

One More Example:

The set S of bit strings with no more than a single 1.

Basis:

$\lambda, 0, 1$ are in S

Induction:

if w is in S, then so are 0w and w0

Extremal Clause