Substituting Supercompactness by Strong Unfoldability

Thomas Johnstone

New York City College of Technology, CUNY
tjohnstone@citytech.cuny.edu

Vienna, June 15, 2009
This talk presents joint work with Joel D. Hamkins.

The two main results can be viewed as analogues of the following two theorems, but in the context of strong unfoldability:

Theorem (Laver ’78)

If κ is supercompact, then after suitable preparatory forcing, the supercompactness of κ becomes indestructible by all $<\kappa$-directed closed forcing.

Theorem (Baumgartner ’79)

If there exists a supercompact cardinal in V, then there is a forcing extension of V in which PFA holds.
Strongly Unfoldable Cardinals
are defined via embeddings whose domain is a set, not the whole universe \(V \)

Definition

For an inaccessible cardinal \(\kappa \), a \(\kappa \)-model of set theory is a transitive set \(M \) of size \(\kappa \) such that \(M \models \text{ZFC}^- \), \(\kappa \in M \), and \(M^{<\kappa} \subseteq M \).

Definition (Villaveces ’98)

An inaccessible cardinal \(\kappa \) is strongly unfoldable if for every ordinal \(\theta \) and every \(\kappa \)-model \(M \) there is an elementary embedding \(j : M \to N \) with \(\text{cp}(j) = \kappa \), \(j(\kappa) > \theta \) and \(V_\theta \subseteq N \).

- view them as “miniature strong” cardinals
- Strong cardinals are strongly unfoldable
Theorem (Villaveces '98)

Strongly unfoldable cardinals

- are weakly compact
- are totally indescribable
- are downwards absolute to L

Moreover

- measurable cardinals are strongly unfoldable in L, but not necessarily in V
- same for Ramsey cardinals

In consistency strength, strongly unfoldable cardinals are

- bounded below by the indescribable cardinals
- bounded above by the subtle cardinals
- relatively low in the hierarchy of large cardinals
Strongly unfoldable cardinals can be viewed as “miniature supercompact” also!

Theorem (Miyamoto ’98, indep. Dzamonja/Hamkins ’06)

The following are equivalent:

- For every ordinal θ and every κ-model M there is $j : M \to N$ with $\text{cp}(j) = \kappa$, $j(\kappa) > \theta$ and $V_\theta \subseteq N$.

- For every ordinal θ and every κ-model M there is $j : M \to N$ with $\text{cp}(j) = \kappa$, $j(\kappa) > \theta$ and $N^\theta \subseteq N$.

This equivalence was discovered independently by Miyamoto ’98 in the context of his H_{κ^+}-reflecting cardinals, an equivalent large cardinal notion.
Indestructibility

Question (Villaveces '98)
Can we make a strongly unfoldable cardinal κ indestructible by $\text{Add}(\kappa, 1)$? How about $\text{Add}(\kappa, \theta)$? What's the strength of a strongly unfoldable κ where GCH fails?

Idea: Borrow lifting techniques from other large cardinals.

- Hamkins '01 used strongness methods to lift through fast function forcing, through $\text{Add}(\kappa, 1)$ and Easton support iterations that control GCH
- Dzamonja and Hamkins '06 used supercompactness methods to show that $\diamondsuit_\kappa(\text{REG})$ can fail at a strongly unfoldable cardinal κ

This hinted at a general indestructibility phenomenon.
The κ-proper posets

- recall that proper forcing is defined by considering whether the generic filter is generic over countable elementary submodels $X \prec H_\lambda$.
- κ-proper forcing generalizes this situation to those elementary submodels $X \prec H_\lambda$ of size κ.
- κ^+-c.c. forcing is κ-proper; so is $\leq \kappa$-closed forcing.
- κ-proper forcing preserves κ^+.

Idea:

- Take a large κ-proper poset \mathbb{P}
- Put \mathbb{P} into $X \prec H_\lambda$ of size κ
- If $\pi : X \rightarrow M$ is Mostowski collapse, then M is a κ-model
- \mathbb{P} would never fit into M, but we work with $\pi(\mathbb{P})$
- Key point: The pointwise image $\pi'' G$ is an M-generic filter for $\pi(\mathbb{P})$, by κ-properness!
- Lift the embedding $j : M \rightarrow N$ to $j^* : M[\pi'' G] \rightarrow N^*$
Theorem (J.,’06)

If κ is strongly unfoldable, then after suitable preparatory forcing, the strong unfoldability of κ becomes indestructible by all $<\kappa$-closed κ-proper forcing. This includes all $<\kappa$-closed κ^+-c.c forcing and all $\leq\kappa$-closed forcing.

- proof uses supercompactness methods (as in [Laver78])
- the preparatory forcing is the lottery preparation of κ (as in [Hamkins00])
- indestructibility by all $<\kappa$-closed forcing, not merely $<\kappa$-directed closed
- indestructibility by $\text{Add}(\kappa, 1)$, $\text{Add}(\kappa, \theta)$, and $\text{Coll}(\theta, \kappa^+)$ for $\theta \geq \kappa^+$
- finite iterations of $<\kappa$-closed κ-proper posets are $<\kappa$-closed κ-proper

Question (J.’06)

Can we make κ indestructible by all $<\kappa$-closed κ^+-preserving forcing?
Answer: Yes!

Main Theorem (Hamkins and J.,’07)

If κ is strongly unfoldable, then after suitable preparatory forcing, the strong unfoldability of κ becomes indestructible by all $<\kappa$-closed κ^+-preserving forcing.

- a key technical step allows us to reduce the case of a κ^+-preserving poset to the main idea that worked with κ-proper posets
- this result is optimal within the class of $<\kappa$-closed posets!
 (If κ is weakly compact in a $<\kappa$-closed forcing extension $V[G]$ collapsing κ^+V, then \square_κ fails in V. But this is a very strong hypothesis, already infinitely many Woodin cardinals.)
- it is impossible to relax $<\kappa$-closure to $<\kappa$-strategic closure
 (the standard forcing to add a κ-Souslin tree is $<\kappa$-strategically closed, but destroys the weak compactness of κ)
Corollary

If there is a model of ZFC with a strongly unfoldable cardinal, then there is a model of ZFC with a weakly compact cardinal κ that is indestructible by all $<\kappa$-closed κ^+ preserving forcing.

Open Question

What is the exact consistency strength of a weakly compact cardinal κ that is indestructible by all $<\kappa$-closed κ^+ preserving forcing?

The question is also open for a weakly compact cardinal κ indestructible by all $<\kappa$-closed κ-proper forcing, or even only $<\kappa$-closed κ^+-c.c. forcing.
The forcing axioms \(\text{PFA and } \text{PFA}(\Gamma) \text{ and } \text{PFA}_\delta \)

Definition

\(\text{PFA} \) is the principle asserting that for every proper poset \(Q \) and for every collection \(D \) of \(\aleph_1 \) many maximal antichains of \(Q \), there exists a \(D \)-generic filter \(G \subseteq Q \).

- If \(\Gamma \) is any class of posets, then \(\text{PFA}(\Gamma) \) is the corresponding assertion restricted to proper posets \(Q \in \Gamma \).
- If \(\delta \) is a cardinal, then \(\text{PFA}_\delta \) is the corresponding assertion where the antichains in \(D \) must have size at most \(\delta \).
The PFA lottery preparation of a cardinal κ, relative to a function $f : \kappa \to \kappa$, is the countable support κ-iteration, which forces at stages $\gamma \in \text{dom}(f)$ with the lottery sum of all proper forcing Q in $V[G_{\gamma}]$ having hereditary size at most $f(\gamma)$.

The PFA lottery preparation

- modifies Hamkins’ lottery preparation [Hamkins00] in a similar way as Baumgartner’s iteration modifies Laver’s preparation [Laver78]
- works best when f exhibits a certain fast-growing behavior
- is flexible tool for various large cardinal notions—no need for Laver functions
- forces $c = 2^\omega = \kappa = \aleph_2$
- of a supercompact cardinal forces PFA
- of a strongly unfoldable cardinal forces what?...
The forcing axioms PFA_{\aleph_2} and PFA_{\aleph_3}

Answer:

Theorem (Hamkins & J. ’06)

The PFA lottery preparation of a strongly unfoldable cardinal κ forces $PFA(\aleph_2$-proper), with $c = \aleph_2 = \kappa$.

- recall: \aleph_2-proper posets include all \aleph_3-c.c posets and all $\leq \aleph_2$-closed posets.

Theorem (Hamkins & J. ’06)

The PFA lottery preparation of a strongly unfoldable cardinal κ forces PFA_{\aleph_2}, with $c = \aleph_2 = \kappa$.

- If the given antichains have size at most $\aleph_2 = \kappa$, then they are small enough to be subsets of the elementary submodel $X \prec H_\lambda$ of size κ. The generic filter G need not be X-generic, but it does meet all antichains inside of X.
Question
Can we improve PFA(\(\mathfrak{N}_2\)-proper) to get PFA (\(\mathfrak{N}_3\)-preserving)?

(A poset is \(\delta\)-preserving if it does not collapse \(\delta\) as cardinal.)

Answer: Yes!

Main Theorem (Hamkins & J. ’07)
If \(\kappa\) is strongly unfoldable and \(0^\#\) does not exist, then the PFA lottery preparation of \(\kappa\) forces PFA (\(\mathfrak{N}_2\)-preserving) and PFA (\(\mathfrak{N}_3\)-preserving) and PFA\(_{\mathfrak{N}_2}\), with \(2^\omega = \kappa = \mathfrak{N}_2\).

Conclusion:
In order to extract significant strength from PFA, one must collapse \(\mathfrak{N}_3\) to \(\mathfrak{N}_1\)!
Combined with the equiconsistency result of Miyamoto ’98, we get:

Corollary

The following are *equiconsistent* over ZFC:

- There is a strongly unfoldable cardinal κ.
- $\text{PFA}(\aleph_2\text{-preserving}) + \text{PFA}(\aleph_3\text{-preserving}) + \text{PFA}_{\aleph_2} + 2^\omega = \aleph_2$
- PFA_{\aleph_2}

Question

Do any of the principles $\text{PFA}(\aleph_2\text{-preserving})$, $\text{PFA}(\aleph_3\text{-preserving})$, or PFA_{\aleph_2} imply any of the others? Are the former principles equiconsistent with the latter?

- What happens if $0^\#$ does exist, to the PFA lottery preparation of a strongly unfoldable cardinal?
- Which fragment of PFA can we get from a weakly compact cardinal?
References

THANK YOU!