The Zariski topology on sets of semistar operations

Dario Spirito

(joint work with Carmelo Finocchiaro and Marco Fontana)

Università di Roma Tre

February 13th, 2015
Indice

1. Definitions and examples

2. The Zariski topology

3. Spectral and eab operations
All rings R will be commutative and unitary; we also assume that R is an integral domain with quotient field K.

We will not assume that R is Noetherian.

An overring is a ring comprised between R and K.

$\text{Zar}(R)$ is the set of valuation overrings of R.

We denote by $\mathbf{F}(R)$ the set of R-submodules of K.
Definition

A map $\star : \mathcal{F}(R) \longrightarrow \mathcal{F}(R)$, $I \mapsto I^\star$ is a semistar operation if, for every $I, J \in \mathcal{F}(R)$,

- it is extensive: $I \subseteq I^\star$;
- it is order-preserving: if $I \subseteq J$ then $I^\star \subseteq J^\star$;
- it is idempotent: $(I^\star)^\star = I^\star$;
- for every $x \in K$, $x \cdot I^\star = (xI)^\star$.

If $I = I^\star$, we say that I is \star-closed.

The first three properties make sense in every partially ordered set, giving the general concept of closure operation.

Related kinds of closure operations: star and semiprime operations.
Definitions and examples

The order structure

Definition

Given two semistar operations \star_1, \star_2, we say that $\star_1 \leq \star_2$ if $I^{\star_1} \subseteq I^{\star_2}$ for every R-submodule I.

- The set $\text{SStar}(R)$ of all semistar operations, with this order, is a complete lattice.
- The infimum of $\{\star_\alpha\}_{\alpha \in A}$ is the operation \star such that $I^\star = \bigcap_{\alpha \in A} I^{\star_\alpha}$.
- There is no general formula for the supremum \star of $\{\star_\alpha\}_{\alpha \in A}$; however, $I = I^\star$ if and only if $I = I^{\star_\alpha}$ for every \star_α.
Finite type

Definition

Let \star be a semistar operation. Then, define \star_f as the map

$$I \mapsto I^{\star_f} := \bigcup \{ F^\star : F \subseteq I, \ F \text{ is finitely generated} \}.$$

- \star_f is always a semistar operation.
- $\star_f \leq \star$.
- $I^\star = I^{\star_f}$ if I is finitely generated.
- \star is a semistar operation of finite type (or a finite-type operation) if $\star = \star_f$.
Why operations of finite type?

- Finite-type closures depend only on finitely-generated fractional ideals (in particular, on ideals inside the ring).
 - For example, if \star_1 and \star_2 are of finite type, and we want to know whether $\star_1 = \star_2$, we only need to check it at ideals.

- More uniform behaviour (no “jumps”).
 - If \star is of finite type and L is R-flat, then $(IL)^* = I^*L$.

- Existence of \star-maximal ideals: say that I is a quasi-\star-ideal if $I = I^* \cap R$. Then, I is contained in a maximal quasi-\star-ideal, which moreover is prime.

- We can control the supremum:

$$I^{\text{sup}}(A) = \bigcup \{ I^*_{\star_1 \cdots \star_n} : \star_1, \ldots, \star_n \in A \}$$
Examples

- If T is an overring, the extension $\wedge_T : I \mapsto IT$ is a semistar operation of finite type.
 - If $T = R$ we get the identity (denoted by d): $I^d = I$ for every submodule I.
 - If $T = K$ we get the trivial extension $\wedge_K: I^K = K$ for every $I \neq (0)$.
- Given a set Δ of overrings, $\star_\Delta := \inf\{\wedge_T : T \in \Delta\}$, i.e.,
 $$I^{\star_\Delta} = \bigcap_{T \in \Delta} IT.$$
- If $\Delta = \{R_P : P \in Y\}$ (with $Y \subseteq \text{Spec}(R)$) is a set of localizations, then we define s_Y as \star_Δ:
 $$I^{s_Y} = \bigcap_{P \in Y} IR_P,$$
Examples (2)

- The \(b \)-operation (or integral closure): if \(I \) is an ideal, \(I^b \) is the set of \(x \in K \) such that

\[
x^n + a_1x^{n-1} + \cdots + a_{n-1}x + a_n = 0
\]

for some \(a_i \in I^i \).

 ▶ Equivalently, \(b = \ast_{\text{Zar}}(R) \).
 ▶ Since we need only a finite amount of data (enough to generate the \(a_i \)) the \(b \)-operation is of finite type.

- The \(v \)-operation: \(I^v = (R : (R : I)) \), where \((F : G) := \{x \in K : xG \subseteq F\}\). More generally, it can be done by using any submodule \(L \) in place of \(R \).

 ▶ This is usually not of finite type: if \(V \) is a valuation domain with non-finitely generated maximal ideal \(M \), then \(M^v = V \) but \(I^v = I \) for every finitely generated ideal.
A Noetherian example

Let R be a Noetherian domain such that $\dim(R) \geq 2$. Consider the set

$$\Delta := \{ V \in \text{Zar}(R) : V \text{ is a DVR} \}.$$

- If I is an ideal of R, $I^\star_\Delta = I^b$; in particular, \star_Δ and b coincide over finitely generated ideals: hence, $(\star_\Delta)_f = b_f = b$.

- If W is a non-discrete valuation overring (for example, if $\dim(W) \geq 2$), then there is (at most) one $V \in \Delta$ above W. Hence, $W^\star_\Delta = V \neq W$, while $W^b = W$: hence, $\star_\Delta \neq b$.

- Therefore, $\star_\Delta \neq (\star_\Delta)_f$, that is, \star_Δ is not of finite type.
The Zariski topology

Definition

We define the Zariski topology on $S\text{Star}(R)$ to be the topology whose subbasic open set are those in the form

$$V_I := \{ \star \in S\text{Star}(R) : 1 \in I^* \}$$

as I ranges among the R-submodule of K.

- We get the same topology if we use the sets of the form

$$V_{I,y} := \{ \star \in S\text{Star}(R) : y \in I^* \}$$

since $V_{I,y} = V_{y^{-1}I}$.

- However, if we want reduce to generalize the topology (for example, to semiprime operations or to rings with zerodivisors), then we have to use the $V_{I,y}$.
Basic properties

- $\text{SStar}(R)$ is T_0.
- Link with the order structure: if O is open, $\star \in O$ and $\star' \geq \star$, then $\star' \in O$.
 - In particular, the closure of $\{\star\}$ is $\{\star' : \star \leq \star'\}$.
- There is a unique closed point (d) and a unique generic point (\wedge_K).
- $\text{SStar}(R)$ is not T_1 nor T_2 (Haussdorff). [Unless $R = K$.]
- $\text{SStar}(R)$ is compact.
- Limited functoriality: if $A \subseteq B$ is an extension of integral domains, there is a continuous map $\text{SStar}(B) \rightarrow \text{SStar}(A)$, which is injective if B is an overring of A.
The Zariski topology on $\text{SStar}_f(R)$

- $\text{SStar}_f(R)$ is dense in $\text{SStar}(R)$.
- The map
 \[
 \psi_f : \text{SStar}(R) \to \text{SStar}_f(R)
 \]
 is a topological retraction.
- If $U_F := V_F \cap \text{SStar}_f(R)$, then
 \[
 \{ U_F : F \text{ is a finitely generated } R\text{-submodule of } K \}
 \]
 is a subbasis of the induced topology.
The Zariski topology on $\text{SStar}_f(R)$ (2)

- The map

$$\iota: \text{Over}(R) \longrightarrow \text{SStar}_f(R)$$

$$T \mapsto \Lambda_T$$

is a topological embedding.

- The topology on $\text{Over}(R)$ is generated by the sets $B_F := \text{Over}(R[F])$, as F varies among the finite subsets of K.

- If $\Lambda \subseteq \text{SStar}_f(R)$ is compact, then $\inf \Lambda$ is of finite type.
 - If $\Delta \subseteq \text{Over}(R)$ is compact, then \star_{Δ} is of finite type.
 - If R is Noetherian, $\dim(R) \geq 2$, then $\{ V \in \text{Zar}(R) : V$ is a DVR$\}$ is not compact.
 - The converse does not hold.

- $\text{SStar}_f(R)$ is a spectral space.
Spectral spaces

Definition

A spectral space is a topological space that is homemorphic to the prime spectrum of a commutative ring R, endowed with the Zariski topology.

- Spec(R) (with the Zariski topology) is a spectral space.
- Zar(R) and Over(R) are spectral spaces.
- Every finite poset (endowed with the order topology) is a spectral space.
Spectral spaces can be characterized topologically [Hochster]: \(X \) is a spectral space if and only if the following properties hold:

- \(X \) is compact and \(T_0 \);
- every irreducible closed subset of \(X \) has a generic point (i.e., it is the closure of a single point);
- there is a basis of compact subsets that is closed by finite intersections.

If \(X = SStar(R) \) or \(X = SStar_f(R) \), then the first and the third point are easy (we use as a base the family of finite intersections of the sets \(U_F \)).

What about the second property?
Ultrafilters

Definition

Let X be a set. A filter on X is a subset \mathcal{Y} of $\mathcal{P}(X)$ such that

- if $A \in \mathcal{Y}$ and $A \subseteq B$ then $B \in \mathcal{Y}$;
- if $A, B \in \mathcal{Y}$ then $A \cap B \in \mathcal{Y}$;
- $\emptyset \notin \mathcal{Y}$.

An ultrafilter is a maximal filter.

- Every filter is contained in an ultrafilter (consequence of Zorn’s lemma).
- Ultrafilters can be used to prove Tychonoff’s theorem.
Spectral spaces and ultrafilters

Through Hochster’s theorem, we can characterize spectral spaces in terms of ultrafilters:

Proposizione ([Finocchiaro, 2014])

Let X be a T_0 space. Then, X is a spectral space if and only if there is a subbasis S of X such that, for every ultrafilter \mathcal{U} on X, the set

$$X_S(\mathcal{U}) := \{ x \in X : \forall B \in S, x \in B \iff B \in \mathcal{U} \}$$

is nonempty.

- The subbase S matters.
- Very non-constructive criterion.
The Zariski topology

$\text{SStar}_f(R)$ as a spectral space

- $S := \{ U_F : F \text{ is finitely generated} \}$.
- The “natural” candidate is
 \[\star := \sup \{ \inf(U_F) : U_F \in \mathcal{U} \} \]
- $\inf(U_F)$ is of finite type since U_F is compact.
- Since all is of finite type, we can control the supremum.
- We can show that $\star \in X_S(\mathcal{U})$.

Teorema

$\text{SStar}_f(R)$ is a spectral space.
What kind of ring?

Suppose $\text{SSStar}_f(R) \simeq \text{Spec}(D)$.

- $\text{SSStar}_f(R)$ has a minimum and a maximum; hence D is local and has a unique minimal prime (so we can take it as a domain).
- $\dim(D) \geq |\text{Spec}(R)|$.
 - $|\text{Spec}(R)| < \infty$: write $\text{Spec}(R) = \{P_1, \ldots, P_n\}$ in a way such that P_i is a minimal element of $\{P_1, \ldots, P_n\}$. Then, if $\Delta_i := \{P_1, \ldots, P_k\}$, we have a descending chain $\land K = s_\emptyset > s_{\Delta_1} > s_{\Delta_2} > \cdots > s_{\Delta_n} = d$, and thus $\dim(D) \geq n = |\text{Spec}(R)|$.
 - $|\text{Spec}(R)| = \infty$: we can do the previous reasoning with arbitrary large finite subsets.
- In particular, if $\text{Spec}(R)$ is infinite, $\dim(D) = \infty$ and, being local, D cannot not Noetherian.
More kinds of semistar operations

Definition

A semistar operation \star is:

- **stable** if $(I \cap J)^\star = I^\star \cap J^\star$ for every $I, J \in F(R)$;
- **spectral** if $I^\star = \bigcap_{P \in \Delta} IR_P$ for some $\Delta \subseteq \text{Spec}(R)$.

- By flatness, a spectral operation is stable.
- The converse is not true: \mathcal{V} a valuation domain with non-finitely generated maximal ideal, $\star = v$.
- However, a stable operation of finite type is spectral.
More kinds of semistar operations (2)

Definition

A semistar operation \star is:

- **eab** if, whenever F, G, H are finitely generated, $(FG)^\star \subseteq (FH)^\star$ implies $G^\star \subseteq H^\star$;
- **valutative** if $I^\star = \bigcap_{V \in \Delta} IV$ for some $\Delta \subseteq \text{Zar}(R)$.

- Valutative operations are eab.
- Not all eab operations are valutative: V a valuation domain with non-finitely generated maximal ideal, $\star = v$.
- However, an eab operation of finite type is valutative.
Spectral and eab: differences

- The relations stable/spectral and eab/valuative are different: spectral is equivalent to stable and semifinite, but valuative is *not* equivalent to eab and semifinite [Fontana and Loper, 2009].
- While \star valutative implies \star_f valutative, \star spectral *does not imply* \star_f spectral [Anderson and Cook, 2000].
- The supremum of a family of finite-type spectral operations is spectral. Does the same holds for valutative operations?
Like $\text{Over}(R)$ is embedded in $\text{SStar}_f(R)$, the set of localizations of R is embedded into $\text{SStar}_{f,sp}(R)$, while $\text{Zar}(R)$ is embedded into $\text{SStar}_{f,eab}(R)$.

Like for $\Psi_f : \text{SStar}(R) \longrightarrow \text{SStar}_f(R)$, we can define retractions $\Psi_{sp} : \text{SStar}(R) \longrightarrow \text{SStar}_{f,sp}(R)$ and $\Psi_a : \text{SStar}(R) \longrightarrow \text{SStar}_{f,eab}(R)$.

- However, while $\Psi_f(\star) \leq \star$ and $\Psi_{sp}(\star) \leq \star$, we have $\Psi_a(\star) \geq \star_f$, and we can’t in general compare $\Psi_a(\star)$ with \star.

$\text{SStar}_{f,sp}(R)$ is a spectral space.

- The proof follows the same path of the proof for $\text{SStar}_f(R)$.

Finite type, spectral and eab: analogies (2)

- If \star is of finite type and eab or spectral, then there is a ring $R_\star(X)$ such that $R[X] \subseteq R_\star(X) \subseteq K(X)$ and $I^\star = IR_\star(X) \cap K$ for every $I \in \mathcal{F}(R)$.

- If $\Delta \subseteq \text{Spec}(R)$ or $\Delta \subseteq \text{Zar}(R)$, then s_Δ (respectively, \star_Δ) is of finite type if and only if Δ is compact.
 - New proof of the fact that $\text{Zar}(R)$ is compact.

- If $\Delta, \Lambda \subseteq \text{Spec}(R)$ are compact, then $\star_\Delta = \star_\Lambda$ if and only if $\Delta^\downarrow = \Lambda^\downarrow$
 - $Y^\downarrow := \{ P \in \text{Spec}(R) : P \subseteq Q \text{ for some } Q \in Y \}$ is the generization of Y.
 - An analogous criterion holds for valutative operations, but in the other way: $\star_\Delta = \star_\Lambda$ if and only if $\Delta^\uparrow = \Lambda^\uparrow$.
The Kronecker function ring

Definition

The Kronecker function ring of R is

$$\text{Kr}(R) := \left\{ \frac{f}{g} \in K(X) : f, g \in R[X], c(f) \subseteq c(g)^b \right\}$$

where $c(f)$ (the content of f) is the ideal of R generated by the coefficients of f.

- $\text{Kr}(R)$ is always a Bézout domain.
- In particular, $\text{Spec}(\text{Kr}(R)) \simeq \text{Zar}(\text{Kr}(R))$.
- With the previous notation, $\text{Kr}(R) = R_b(X)$.

The Kronecker function ring (2)

Teorema

The map $\Phi : \text{Zar}(R) \rightarrow \text{Zar}(\text{Kr}(R))$, $V \mapsto \text{Kr}(V)$ is an homeomorphism.
The Kronecker function ring (2)

Teorema

The map $\Phi : \text{Zar}(R) \rightarrow \text{Zar}(\text{Kr}(R))$, $V \mapsto \text{Kr}(V)$ is an homeomorphism.

Let \star be a valutative operation of finite type.

- $\star = \star_\Delta$ for a unique $\Delta \subseteq \text{Zar}(R)$ such that Δ is compact and $\Delta = \Delta^\uparrow$;
- $\Phi(\Delta) \subseteq \text{Zar}(\text{Kr}(R))$ is compact and $\Phi(\Delta)^\uparrow = \Phi(\Delta)$;
- $\Phi(\Delta)$ corresponds to $Y \subseteq \text{Spec}(\text{Kr}(R))$, which is compact and such that $Y = Y^\downarrow$;
- Y generates s_Y.

$$\text{SStar}_{f,eab}(R) \simeq \text{SStar}_{f,sp}(\text{Kr}(R))$$
Bibliography

