RECURSIVE SEQUENCES AND FAITHFULLY FLAT EXTENSIONS

Hans Schoutens

INTRODUCTION

This note arises from an attempt to give some model-theoretic interpretation of the concept of flatness. It is well-known that a necessary condition for a ring morphism \(A \to B \) to be faithfully flat, is that any linear system of equations with coefficients from \(A \) which has a solution over \(B \), must have already a solution over \(A \). In fact, if we strenghten this condition to any solution over \(B \) comes from solutions over \(A \) by base change, then this becomes also a sufficient condition for being faithfully flat. However, whereas the first (necessary) condition is reminiscent of the model-theoretic notion of existentially closedness, the second seems to have no model-theoretic counterpart. Recall that a subring \(A \) of a ring \(B \) is said to be existentially closed in \(B \), if any (not necessarily linear) system of equations with coefficients from \(A \) which is solvable over \(B \) is already solvable over \(A \). This is the relative version of this concept, the absolute version reads: a ring \(A \) in a class of rings \(K \) is called existentially closed or generic for that class, if for any overring \(B \in K \) we have that \(A \) is existentially closed in \(B \).\(^1\) So, paraphrasing this notion, one could say that if \(A \subset B \) is faithfully flat, then \(A \) is existentially closed in \(B \) with respect to linear equations. But as already observed, this is not a sufficient condition to guarantee faithful flatness.

I will present a property of rings which is a consequence of faithfully flatness, but presumably stronger than existentially closedness for linear equations. The key definition is that of a (linear) recursive sequence \((x_n)\) over a ring \(A \), as a sequence satisfying some fixed linear relation over \(A \) among \(t \) consecutive terms. We will show that if \(A \to B \) is faithfully flat and \((x_n)\) is a sequence of elements in \(A \) satisfying a linear recursion relation with coefficients in \(B \), then it already satisfies such a recursion relation (of the same length) with coefficients in \(A \). As there is a strong connection between recursive sequences and rational power series, we obtain the following corollary. Assume, moreover, that \(A \) and \(B \) are normal domains, then any power series over \(A \) which is rational (meaning that it can be written as a quotient of two polynomials) over \(B \), is already rational over \(A \). Any direct attempt, however, to prove this corollary just using faithfully flatness seems to fail as far as I can tell.

1. Definition. Let \(A \) be a Noetherian ring and let \(\bar{x} = (x_n)_{n<\omega} \) be a (countable) sequence of elements of \(A \). We say that \(\bar{x} \) is recursive over \(A \) (of length \(t \)), if there

1991 Mathematics Subject Classification. ?.

Key words and phrases. flatness, recursive sequence, existentially closed.

\(^1\)The typical example here is an algebraically closed field within the class of all fields.
exists a linear form \(L(X) = r_0X_0 + \cdots + r_{t-1}X_{t-1} \in A[X] \), where \(t \in \mathbb{N} \) and \(X = (X_i)_{i \leq t} \), such that for all \(n \gg 0 \), we have that

\[
L(x_n, \ldots, x_{n+t-1}) = x_{n+t}.
\]

Here we have used the notation \(n \gg 0 \) as an abbreviation for there exists \(n_0 \), such that for all \(n \geq n_0 \).

2. Theorem. Let \(A \to B \) be a morphism of Noetherian rings and let \(\bar{\mathbf{x}} \) be a sequence in \(A \). If \(B \) is faithfully flat over \(A \) and \(\bar{\mathbf{x}} \) is recursive over \(B \), then \(\bar{\mathbf{x}} \) is already recursive over \(A \) (of the same length).

Proof. Let \(L_t(\bar{x}) \) be the collection of all linear forms \(L(X) \in A[X] \), where \(X = (X_i)_{i \leq t} \) and \(t \in \mathbb{N} \), such that, for all \(n \gg 0 \), we have that \(L(x_n, \ldots, x_{n+t}) = 0 \).

Evidently, \(L_t(\bar{x}) \) carries the structure of an \(A \)-module. Let \(e \) be the \((t + 1)\)-tuple \((0, \ldots, 0, -1)\) and let

\[
a_t(\bar{x}) = \{ L(e) \mid L \in L_t(\bar{x}) \}.
\]

As the latter is the image of \(L_t(\bar{x}) \) under the morphism \(A[X] \to A \) defined by substituting \(e \) for \(X \), it is an ideal of \(A \).

We claim that \(\bar{\mathbf{x}} \) is recursive over \(A \) of length \(t \), if and only if \(a_t(\bar{x}) = A \).

Indeed, if \(\bar{\mathbf{x}} \) is recursive over \(A \) of length \(t \), then there is a linear form \(L(X) \in A[X] \), with \(X = (X_i)_{i \leq t} \), such that for all \(n \gg 0 \), we have that \(L(x_n, \ldots, x_{n+t}) = x_{n+t} \).

Let \(L'(X, X_t) = L(X) - X_t \), so that \(L' \in L_t(\bar{x}) \). Since \(1 = L'(e) \), we proved one direction and the converse follows along the same lines.

Now, by assumption \(\bar{\mathbf{x}} \) is recursive over \(B \) of length \(t \), so that by the criterion we just established, \(a_t^B(\bar{x}) = B \). Hence let \(L(X) = b_0X_0 + \cdots + b_tX_t \in B[X] \) be a witness to this, where \(X = (X_i)_{i \leq t} \), i.e., such that for some \(n_0 \in \mathbb{N} \), we have, for all \(n \geq n_0 \), that \(L(x_n, \ldots, x_{t+n}) = 0 \) and \(L(e) = 1 \). Therefore \(b_t = -1 \). Put \(b = (b_i)_{i \leq t} \in B^t \). For every \(n \geq n_0 \), let \(M_n(Y) \in A[Y] \), where \(Y = (Y_i)_{i \leq t} \), be defined as

\[
M_n(Y) = x_nY_0 + \cdots + x_{n+t}Y_t.
\]

By Noetherianity, there exists some \(n_1 \geq n_0 \), such that each \(M_n \), for \(n \geq n_0 \), lies in the ideal of \(A[Y] \) generated by \(M_{n_0}, \ldots, M_{n_1} \). In other words, there exist \(p_{n,k}(Y) \in A[Y] \), such that, for all \(n \geq n_0 \) and all \(k \) with \(n_0 \leq k \leq n_1 \), we have that

\[
(1) \quad M_n(Y) = \sum_{k=n_0}^{n_1} p_{n,k}(Y)M_k(Y).
\]

By construction, \(M_k(b, -1) = 0 \), for \(n_0 \leq k \leq n_1 \). By flatness, we can find finitely many \(a^{(j)} \in A^t \), \(e^{(j)} \in A \) and \(\beta^{(j)} \in B \), such that

\[
(2) \quad M_k(a^{(j)}, e^{(j)}) = 0,
\]

for all \(j < s \) and \(n_0 \leq k \leq n_1 \), and

\[
(3) \quad b = \sum_{j<s} \beta^{(j)}a^{(j)},
\]

\[
-1 = \sum_{j<s} \beta^{(j)}e^{(j)}.
\]
However, from (1) and (2), it then follows that $M_n(a^{(j)}, e^{(j)}) = 0$, for all $j < s$ and all $n \geq n_0$. This means that $L^{(j)}(X) = a^{(j)}_{0}X_0 + \cdots + a^{(j)}_{t-1} + e^{(j)}X_t$ lies in $L_{t}(\vec{x})$, for each $j < s$, where $a^{(j)} = (a^{(j)}_{i})_{i < t}$. Hence $-e^{(j)} \in A^{t}(\vec{x})$. Together with (3), we therefore conclude that $A^{t}(\vec{x})B = B$. But faithfully flatness then implies that $A^{t}(\vec{x}) = A$, which by the above criterion means that \vec{x} is recursive over A of length t. \[\blacksquare\]

1.3. Proposition. Let A be a Noetherian ring and \vec{x} a sequence in A. Let $\xi_\vec{x}(T) \in A[[T]]$ be the generating series of \vec{x}, i.e.,

$$\xi_\vec{x}(T) = \sum_{n=0}^{\infty} x_n T^n.$$

Then \vec{x} is recursive over A, if and only if, $\xi_\vec{x}(T)$ lies in $A(T)$, where the latter ring is the localization of $A[T]$ to the multiplicative set $1 + (T)A[T]$.

Proof. Suppose that \vec{x} is recursive and let $\xi(T) = \xi_\vec{x}(T)$. There is some n_0 and some $a_k \in A$, for $k < t$, such that

(1) $x_n = a_0x_{n-t} + \cdots + a_{t-1}x_{n-1}$

for all $n \geq n_0$. We want to show that

(2) $\xi(T) \equiv Q(T)\xi(T) \mod A[T]$

for some polynomial $Q(T) \in (T)A[T]$. Indeed, if (2) holds, then

$$\xi(T) = Q(T)\xi(T) + P(T)$$

for some $P(T) \in A[T]$ and hence $\xi(T) = P(T)/(1 - Q(T))$ as required.

We work in the A-module $A[[T]]/A[T]$. Clearly

$$\xi(T) \equiv T^{n_0} \cdot \xi_{\vec{x}'}(T) \mod A[T],$$

where \vec{x}' is the sequence obtained from \vec{x} by deleting the first n_0 elements. Hence in order to prove (2) we may work with this new recursive sequence and hence assume from the start that $n_0 = 0$. We have, using (1), that

$$\xi(T) = \sum_{n < t} x_n T^n + \sum_{n \geq t} x_n T^n$$

$\equiv \sum_{n \geq t} (a_0x_{n-t} + \cdots + a_{t-1}x_{n-1})T^n \mod A[T]$

$\equiv a_0T^t\xi(T) + \cdots + a_{t-1}T\xi(T) \mod A[T]$.

This proves (2).

The converse is an easy exercise and left to the reader. \[\blacksquare\]
1.4. Corollary. Let \(\varphi \colon A \to B \) be a morphism of Noetherian rings. If \(\varphi \) is faithfully flat, then

\[
A(T) = A[[T]] \cap B(T),
\]

for \(T \) a single variable.

Proof. The \(\subset \)-inclusion is immediate hence take \(F \) in the right hand side of (1). Taking the coefficients of \(F \) as the members of a sequence \(\bar{x} \) over \(A \), we have that \(F(T) = \xi_{\bar{x}}(T) \). Since \(F(T) \in B(T) \), the sequence \(\bar{x} \) is recursive over \(B \) by (1.3). Therefore, by faithfully flatness and (1.2), \(\bar{x} \) is also recursive over \(A \) which by (1.3) again means that \(F \in A(T) \).

\[\blacksquare\]

1.5. Corollary. Let \(A \to B \) be a faithfully flat morphism of Noetherian normal domains. Then any power series with coefficients in \(A \) which is rational over \(B \), is already rational over \(A \).

Proof. A Noetherian normal domain \(A \) has the Fatou property by CHABERT [1, §3], meaning that \(A(T) \) is equal to the intersection of the fraction field of \(A[[T]] \) with \(A[[T]] \), i.e., \(A(T) \) is the ring of rational power series and we can apply (1.4).

References