NEW YORK CITY COLLEGE OF TECHNOLOGY
The City University of New York

DEPARTMENT:
Mathematics

COURSE:
MAT 2675

TITLE:
Calculus III

DESCRIPTION:
A continuation of MA 575. Topics include improper integrals, series, vectors, solid analytic geometry, partial derivatives, and multiple integrals.

TEXT:
Calculus, 5th ed., by James Stewart, Thomson
or
Multivariable Calculus, 5th ed., by James Stewart, Thomson

CREDITS:
4

PREREQUISITES:
MAT 1575

Prepared by:
Prof. H. Africk
Prof. S. Han
Spring 2009

A. Testing Guidelines:
The following exams should be scheduled:
1. A one-hour exam at the end of the First Quarter.
2. A one session exam at the end of the Second Quarter.
3. A one-hour exam at the end of the Third Quarter.
4. A one session Final Examination.
Learning Outcomes for MAT 2675 Calculus III

1. Students will be able to evaluate improper integrals.

2. Students will be able to construct infinite series and test for their convergence and divergence.

3. Students will be able to solve problems involving vectors in two-dimensional and three-dimensional space.

4. Students will be able to find the equation of lines, planes, and quadric surfaces in three-dimensional space.

5. Students will be able to find the partial derivatives of a function of several variables.

6. Students will be able to evaluate multiple integrals and find the volumes of three-dimensional solids.
Mathematics Department Policy on Lateness/Absence

A student may be absent during the semester without penalty for 10% of the class instructional sessions. Therefore,

If the class meets: The allowable absence is:
1 time per week 2 absences per semester
2 times per week 3 absences per semester

Students who have been excessively absent and failed the course at the end of the semester will receive either

• the WU grade if they have attended the course at least once. This includes students who stop attending without officially withdrawing from the course.

• the WN grade if they have never attended the course.

In credit bearing courses, the WU and WN grades count as an F in the computation of the GPA. While WU and WN grades in non-credit developmental courses do not count in the GPA, the WU grade does count toward the limit of 2 attempts for a developmental course.

The official Mathematics Department policy is that two latenesses (this includes arriving late or leaving early) is equivalent to one absence.

Every withdrawal (official or unofficial) can affect a student’s financial aid status, because withdrawal from a course will change the number of credits or equated credits that are counted toward financial aid.

New York City College of Technology Policy on Academic Integrity

Students and all others who work with information, ideas, texts, images, music, inventions, and other intellectual property owe their audience and sources accuracy and honesty in using, crediting, and citing sources. As a community of intellectual and professional workers, the College recognizes its responsibility for providing instruction in information literacy and academic integrity, offering models of good practice, and responding vigilantly and appropriately to infractions of academic integrity. Accordingly, academic dishonesty is prohibited in The City University of New York and at New York City College of Technology and is punishable by penalties, including failing grades, suspension, and expulsion. The complete text of the College policy on Academic Integrity may be found in the catalog.
<table>
<thead>
<tr>
<th>Session</th>
<th>Calculus III</th>
<th>Homework</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7</td>
<td>Indeterminate Forms and L'Hopital's Rule (pages 493-501)</td>
<td>P. 501: 1, 5-11 odd, 15-23 odd, 27, 29, 37, 38, 41</td>
</tr>
<tr>
<td>8.8</td>
<td>Improper Integrals (pages 566-573), Examples 1-8</td>
<td>P. 573: 1-29 every other odd, 37, 41, 57, 63</td>
</tr>
<tr>
<td>12.1</td>
<td>Sequences (pages 737-746), Examples 1,2, 4-9</td>
<td>P. 746: 3, 5, 9-21 odd, 25, 27, 29, 49</td>
</tr>
<tr>
<td>12.2</td>
<td>Series (pages 749-756) Examples 1-5, 7, 8</td>
<td>P. 756: 9-21 odd, 25, 27, 29, 35, 37</td>
</tr>
<tr>
<td>12.3</td>
<td>The Integral Test and p-series (pages 759-765) Examples 1-4</td>
<td>P. 765: 3-21 odd</td>
</tr>
<tr>
<td>12.4</td>
<td>The Comparison Tests (pages 766-770), Examples 1-4</td>
<td>P. 770: 3-25 odd, 29</td>
</tr>
<tr>
<td>12.5</td>
<td>Alternating Series (pages 771-775), Examples 1-3</td>
<td>P. 775: 3-13 odd</td>
</tr>
<tr>
<td>12.6</td>
<td>Absolute Convergence and the Ratio and Root Tests (pages 776-781), Examples 1-6</td>
<td>P. 781: 1-23 odd</td>
</tr>
<tr>
<td>12.7</td>
<td>Strategy for Testing Series (pages 783-784), Examples 1-6</td>
<td>P. 784: 1-13 odd, 19, 21</td>
</tr>
<tr>
<td>12.8</td>
<td>Power Series (pages 785-789), Example 1, 2, 4, 5</td>
<td>P. 789: 3-7 odd, 15-19 odd</td>
</tr>
<tr>
<td>12.10</td>
<td>Taylor and Maclaurin Series (pages 796-806), Example 1, 3-5</td>
<td>P. 806: 3, 6, 11, 13-16</td>
</tr>
<tr>
<td>FIRST EXAMINATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>Three-Dimensional Coordinate Systems (pages 829-832), Examples 1-6</td>
<td>P. 833: 1-5 odd, 11-15 odd, 23-29 odd, 30, 33</td>
</tr>
<tr>
<td>13.2</td>
<td>Vectors (pages 834-840), Examples 1-6</td>
<td>P. 841: 7-25 odd</td>
</tr>
<tr>
<td>13.3</td>
<td>The Dot Product (pages 843-848), Examples 1-6</td>
<td>P. 848: 3-9 odd, 13-25 odd, 29, 31, 35-39 odd</td>
</tr>
<tr>
<td>13.4</td>
<td>The Cross Product (pages 850-856), Examples 1-5</td>
<td>P. 856: 1-5 odd, 13-17 odd, 23-33 odd</td>
</tr>
<tr>
<td>13.5</td>
<td>Equations of Lines and Planes (pages 858-865), Examples 1-10</td>
<td>P. 865: 3-7 odd, 11-19 odd, 23, 25, 29, 31, 35, 39, 45-53 odd, 61-67 odd, 72</td>
</tr>
<tr>
<td>13.6</td>
<td>Cylinders and Quadric Surfaces (pages 868-873), Examples 1-6</td>
<td>P. 873: 3, 5, 11, 17, 21-28 all</td>
</tr>
<tr>
<td>MIDTERM EXAMINATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session</td>
<td>Calculus III</td>
<td>Homework</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>15.1</td>
<td>Functions of Several Variables (pages 923-933), Example: 1, 4-6</td>
<td>P. 933: 6, 8, 11, 12, 21-29 odd</td>
</tr>
<tr>
<td>15.2</td>
<td>Limits and Continuity (pages 938-944) Examples:1, 2, 5, 6, 7</td>
<td>P. 944: 5, 7, 11, 13, 27-33 odd</td>
</tr>
<tr>
<td>15.3</td>
<td>Partial Derivatives (pages 945-955) Examples: 1-6</td>
<td>P. 956: 13-17 odd, 35, 37, 47-57 odd</td>
</tr>
<tr>
<td>15.4</td>
<td>Tangent Planes and Linear Approximations (pages 959-967), Examples 1, 2, 4, 5, 6</td>
<td>P. 966: 1, 3, 5, 11, 13, 23, 25, 29, 31, 33</td>
</tr>
<tr>
<td>15.5</td>
<td>The Chain Rule (pages 967-973), Examples 1, 3, 4, 5, 8, 9</td>
<td>P. 974: 1-7 odd, 13, 15, 21, 23, 27-31 odd</td>
</tr>
<tr>
<td>THIRD EXAMINATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.2</td>
<td>Iterated Integrals (pages 1025-1030), Example 1-5</td>
<td>P. 1030: 1-5 odd, 13, 15, 19, 21-25 odd</td>
</tr>
<tr>
<td>16.3</td>
<td>Double Integrals over General Regions (pages 1031-1037), Examples 1-5</td>
<td>P. 1038: 1, 5, 7, 9, 13, 17, 19, 21, 23, 27, 37-43 odd</td>
</tr>
<tr>
<td>16.4</td>
<td>Double Integrals in Polar Coordinates (pages 1039-1043), Examples 1-4</td>
<td>P. 1044: 1-13 odd, 17, 19, 21, 23, 27, 37-43 odd</td>
</tr>
<tr>
<td>16.7</td>
<td>Triple Integrals (pages 1059-1066), Examples 1-4</td>
<td>P. 1066: 1-11 odd, 17, 19, 25, 27, 33</td>
</tr>
<tr>
<td>FINAL EXAMINATION</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Calculus III

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Pages</th>
<th>Homework</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7</td>
<td>Indeterminate Forms and L'Hopital's Rule</td>
<td>493-501</td>
<td>P. 501: 1, 5-11 odd, 15-23 odd, 27, 29, 37, 38, 41</td>
</tr>
<tr>
<td>8.8</td>
<td>Improper Integrals</td>
<td>566-573</td>
<td>P. 573: 1-29 every other odd, 37, 41, 57, 63</td>
</tr>
<tr>
<td>12.1</td>
<td>Sequences</td>
<td>737-746</td>
<td>P. 746: 3, 5, 9-21 odd, 25, 27, 29, 49</td>
</tr>
<tr>
<td>12.2</td>
<td>Series</td>
<td>749-756</td>
<td>P. 756: 9-21 odd, 25, 27, 29, 35, 37</td>
</tr>
<tr>
<td>12.3</td>
<td>The Integral Test and p-series</td>
<td>759-765</td>
<td>P. 765: 3-21 odd</td>
</tr>
<tr>
<td>12.4</td>
<td>The Comparison Tests</td>
<td>766-770</td>
<td>P. 770: 3-25 odd, 29</td>
</tr>
<tr>
<td>12.5</td>
<td>Alternating Series</td>
<td>771-775</td>
<td>P. 775: 3-13 odd</td>
</tr>
<tr>
<td>12.6</td>
<td>Absolute Convergence and the Ratio and Root Tests</td>
<td>776-781</td>
<td>P. 781: 1-23 odd</td>
</tr>
<tr>
<td>12.7</td>
<td>Strategy for Testing Series</td>
<td>783-784</td>
<td>P. 784: 1-13 odd, 19, 21</td>
</tr>
<tr>
<td>12.8</td>
<td>Power Series</td>
<td>785-789</td>
<td>P. 789: 3-7 odd, 15-19 odd</td>
</tr>
<tr>
<td>12.10</td>
<td>Taylor and Maclaurin Series</td>
<td>796-806</td>
<td>P. 806: 3, 6, 11, 13-16</td>
</tr>
<tr>
<td>13.1</td>
<td>Three-Dimensional Coordinate Systems</td>
<td>829-832</td>
<td>P. 833: 1-5 odd, 11-15 odd, 23-29 odd, 30, 33</td>
</tr>
<tr>
<td>13.2</td>
<td>Vectors</td>
<td>834-840</td>
<td>P. 841: 7-25 odd</td>
</tr>
<tr>
<td>13.3</td>
<td>The Dot Product</td>
<td>843-848</td>
<td>P. 848: 3-9 odd, 13-25 odd, 29, 31, 35-39 odd</td>
</tr>
<tr>
<td>13.4</td>
<td>The Cross Product</td>
<td>850-856</td>
<td>P. 856: 1-5 odd, 13-17 odd, 23-33 odd</td>
</tr>
<tr>
<td>13.5</td>
<td>Equations of Lines and Planes</td>
<td>858-865</td>
<td>P. 865: 3-7 odd, 11-19 odd, 23, 25, 29, 31, 35, 39, 45-53 odd, 61-67 odd, 72</td>
</tr>
<tr>
<td>13.6</td>
<td>Cylinders and Quadric Surfaces</td>
<td>868-873</td>
<td>P. 873: 3, 5, 11, 17, 21-28 all</td>
</tr>
<tr>
<td>15.1</td>
<td>Functions of Several Variables</td>
<td>923-933</td>
<td>P. 933: 6, 8, 11, 12, 21-29 odd</td>
</tr>
<tr>
<td>15.2</td>
<td>Limits and Continuity</td>
<td>938-944</td>
<td>P. 944: 5, 7, 11, 13, 27-33 odd</td>
</tr>
<tr>
<td>Topic</td>
<td>Pages</td>
<td>Examples</td>
<td>Sections</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>15.3 Partial Derivatives</td>
<td>945-955</td>
<td>1-6</td>
<td>P. 956: 13-17 odd, 35, 37, 47-57 odd</td>
</tr>
<tr>
<td>15.4 Tangent Planes and Linear Approximation</td>
<td>959-967,</td>
<td>1, 2, 4, 5, 6</td>
<td>P. 966: 1, 3, 5, 11, 13, 23, 25, 29, 31, 33</td>
</tr>
<tr>
<td>15.5 The Chain Rule</td>
<td>967-973</td>
<td>1, 3, 4, 5, 8, 9</td>
<td>P. 974: 1-7 odd, 13, 15, 21, 23, 27-31 odd</td>
</tr>
<tr>
<td>16.2 Iterated Integrals</td>
<td>1025-1030</td>
<td>1-5</td>
<td>P. 1030: 1-5 odd, 13, 15, 19, 21-25 odd</td>
</tr>
<tr>
<td>16.3 Double Integrals over General Regions</td>
<td>1031-1037,</td>
<td>1-5</td>
<td>P. 1038: 1, 5, 7, 9, 13, 17, 19, 21, 23, 27, 37-43 odd</td>
</tr>
<tr>
<td>16.7 Triple Integrals</td>
<td>1059-1066</td>
<td>1-4</td>
<td>P. 1066: 1-11 odd, 17, 19, 25, 27, 33</td>
</tr>
</tbody>
</table>