Bose-Einstein Condensation of Trapped Polaritons in a Microcavity in a High Magnetic Field

Presented by:

Prof. Oleg L. Berman

New York City College of Technology

Friday, March 19 at 11:00 AM
Namm 805 (Conference Room in Dean’s Office)

Abstract

The Bose-Einstein condensation (BEC) of magnetoexcitonic polaritons (magnetopolaritons) in a two-dimensional (2D) electron-hole system embedded in a semiconductor microcavity in a high magnetic field B is predicted. There are two physical realizations of the 2D electron-hole system under consideration: a graphene layer and a quantum well (QW). A 2D gas of magnetopolaritons is considered in a planar harmonic potential trap. Two possible physical realizations of this trapping potential are assumed: inhomogeneous local stress or harmonic electric field potential applied to excitons and a parabolic shape of the semiconductor cavity causing the trapping of microcavity photons. The effective Hamiltonian of the ideal gas of cavity polaritons in a QW and graphene in a high magnetic field and the BEC temperature as functions of magnetic field are obtained.