Momentum resolved optical pump-probe spectroscopy in monolayer graphene: An analytical model and measurements

Presented by:
Dr. Maxim Trushin
University of Konstanz
Konstanz, Germany

Thursday, March 12 at 2:00 PM
Namm, Room 823

Abstract

The interband optical transitions lie in the very heart of graphene-based optoelectronics and are subject to the pseudospin-selection rule resulting in the anisotropic photocarrier occupation with the life-time of a few tens of fs. Here, we report polarization and fluence dependent ultrafast pump-probe spectroscopy of high-quality monolayer graphene along with the analytical model aimed to describe the measurements. This frame work allows us to quantify and control the relative contributions of both the strongly non-equilibrium anisotropic occupation and hot Fermi-Dirac photocarrier distribution to the total differential transmission measured. Application of the model to the graphene-based photodetection is discussed.

Light refreshments will be served.